
Extending Architectural Representation in UML with
View Integration

Alexander Egyed and Nenad Medvidovic

Center for Software Engineering
University of Southern California

Los Angeles, CA 90089-0781, USA
{aegyed,neno}@sunset.usc.edu

Abstract. UML has established itself as the leading OO analysis and design
methodology. Recently, it has also been increasingly used as a foundation for
representing numerous (diagrammatic) views that are outside the standardized
set of UML views. An example are architecture description languages. The
main advantages of representing other types of views in UML are 1) a common
data model and 2) a common set of tools that can be used to manipulate that
model. However, attempts at representing additional views in UML usually fall
short of their full integration with existing views. Integration extends represen-
tation by also describing interactions among multiple views, thus capturing the
inter-view relationships. Those inter-view relationships are essential to enable
automated identification of consistency and conformance mismatches. This
work describes a view integration framework and demonstrates how an archi-
tecture description language, which was previously only represented in UML,
can now be fully integrated into UML.

1 Introduction

Software systems are characterized by unprecedented complexity. One effective
means of dealing with that complexity is to consider a system from a particular per-
spective, or view. Views enable software developers to reduce the amount of informa-
tion they have to deal with at any given time. It has been recognized that “it is not the
number of details, as such, that contributes to complexity, but the number of details of
which we have to be aware at the same time.” [1].

A major drawback of describing systems as collections of views is that the soft-
ware development process tends to become rather view centric (seeing views instead
of the big picture). Such a view centric approach exhibits a fair amount of redundancy
across different views as a side effect. That redundancy is the cause for inter-view
mismatches, such as inconsistencies or incompletenesses. On top of that, views are
used independently, concurrently, are subjected to different audiences (interpreta-
tions) and the manner in which model information is shared is extremely inconsistent.
All this implies that information about a system must be captured multiple times and
must be kept consistent.

To deal with this problem, a major emphasis needs to be placed on mismatch iden-
tification and reconciliation within and among views (view integration). We design

Published in Proceedings of the 2nd International Conference on the Unified
Modeling Language (UML), Fort Collins, CO, October 1999, pp. 2-16

not only because we want to build (compose) but also because we want to understand.
Thus, a major focus of software development is to analyze and verify the conceptual
integrity, consistency, and completeness of the model of a system.

There are numerous reasons for the lack of automated assistance in identifying
view mismatches. We believe that one of the major reasons is improper integration of
views on a meta-level: although both the notation and semantics of individual views
may be very well defined, meta-models that integrate these different views are often
inadequate or missing. The Unified Modeling Language (UML) [2] is a good example
of this. UML defines a set of views (such as class diagrams, sequence diagrams, and
state diagrams) and defines a meta-model for those views. However, the UML meta-
model was primarily designed to deal with the issue of capturing and representing
modeling elements of views in a common data model (repository).

Another problem with UML is that its views had to be designed to be generally
understandable and they are therefore rather simple. The result is that UML view
semantics are not well defined so as not to over-constrain the language or limit its
usability. Therefore, UML becomes less suitable in domains were more precision
(performance, reliability, etc.) is required. One way of addressing this deficiency is
the use of additional views. Figure 1 shows an example on how a general purpose
development methodology such as UML may be used together with more (domain)
specific description languages such as architecture description languages (ADLs).
What we mean by architecture is a course grain description of a system with high-
level components, connectors, and their configuration. A design further refines the
architecture by elaborating on the details of individual components/connectors as well
as their interactions. In Figure 1, UML serves as a general development model,
whereas more specific views can be generated by taking excursions off the main
process to investigate specific concerns, e.g., deadlock detection among modeling
elements. Although some UML views support behavioral design, these are inadequate

General Spiral-Cycle
Process Model

ADL
Cycle

1

...UML

ADL
Cycle

2

Figure 1. Substituting UML (general-purpose) with ADLs (specific)

in automatically detecting potential deadlocks. More comprehensive behavior models
and views can therefore be used to augment UML.

The challenge of integrating UML becomes more than just integrating existing
UML views but also integrating additional views that may be used during the devel-
opment life-cycle. The ultimate goal of view integration is to provide automatic assis-
tance in identifying view mismatches. Although ensuring the conceptual integrity of
models/views may not be fully automatable, there are various types of mismatches
that can be identified and even resolved in an automated or semi-automated fashion.

2 Motivation for View Integration in UML

A number of options have recently been proposed to represent certain architectural
concerns in UML [3,4,5]. However to date none of them have explored the possibility
of ensuring the consistency of these new views with existing ones. We refer to this
issue of ensuring consistency among different views as view integration (as opposed
to mere view representation). A contribution of this paper is a framework and a set of
techniques for integrating existing views with newly introduced architectural views.

This section explains in a bit more detail the existing support in UML for view rep-
resentation and its current limitations with regard to view integration.

2.1 Architectural Representation in UML

In UML, a number of views are captured and sufficiently represented through the use
of the UML meta-model. UML views capture both structural and behavioral aspects
of software development. Structural views make use of classes, packages, use cases,
and so forth. Behavioral views are represented through scenarios, states, and activi-
ties.

Furthermore, UML views may be general or instantiated. Generalized views cap-
ture model information and configuration that are true during the entire life time of a
model. Instantiated views, on the other hand, depict examples or possible scenarios
which usually only describe a subset of the interactions a model element goes through
during its life.

Although the UML meta-model could be extended to capture additional non-UML
views (such as ADLs), this approach would result in a model that would become
UML incompatible. UML, however, supports the need of refinement and augmenta-
tion of its specifications through three built-in extension mechanisms:

• Constraints place semantic restrictions on particular design elements. UML uses

the Object Constraint Language (OCL) to define constraints [2].
• Tagged values allow new attributes to be added to particular elements of the

model.
• Stereotypes allow groups of constraints and tagged values to be given descriptive

names and applied to other model elements; the semantic effect is as if the con-
straints and tagged values were applied directly to those elements.

Using above mechanisms enables us to represent new concepts in UML. For instance,
we could choose to incorporate Entity-Relationship models expressed via stereotyped
and constrained class diagrams. We could also start representing architectural descrip-
tion languages (e.g. C2 [6], Wright [7], Rapide [8]) within the UML framework. The
advantages of doing so are several:

• Common Model Representation: Modeling information of different types of
views (UML and non-UML) can be physically stored in the same repository. This
eliminates problems associated with distributed development information (e.g.,
access, loss) and their interpretation (e.g., exotic data format).

• Reduced Toolset for Model Manipulation: Being able to use UML elements to
represent non-UML artifacts enables us to use existing UML toolsets to create
those views. For instance, one diagram drawing tool can be used on different
types of views.

• Unified Way of Cross-Referencing Model Information: Having modeling infor-
mation stored at one physical location further enables us to cross-reference that
information. Cross-referencing is useful for maintaining the traceability among
development elements.

2.2 Deficiencies of pure View Representation

The UML extension mechanism discussed above is adequate for representing numer-
ous diagrammatic views. The only major limitation is that existing UML modeling
elements (such as classes, objects, activities, states, or packages) must be used
(stereotyped and constrained) to represent new concepts. This becomes a particular
problem when external concepts cannot be represented by what UML provides.

A more severe shortfall of view representation is that it comes up short in fully in-
tegrating views with each other: Although UML and its meta-model define notational
and semantic aspects of individual views in detail, inter-view relationships are not
captured in sufficient detail. Without these information, the (UML) model is nothing
more than a collection of loosely coupled (or completely unrelated) views. Figure 2
illustrates this by showing UML views as being separate entities within a common
environment (UML meta-model). Although, some views are weakly integrated (e.g.
class and sequence diagrams), in general, UML views are independent.

Figure 2 shows, the lack of view integration extends beyond existing UML views
to non-UML views represented in UML (e.g. ADLs). For instance, if a system is
specified in some architectural fashion then its realization (in the design and imple-
mentation) must adhere to the constraints imposed by that architecture. UML view
representation only limits how information can be described in UML, but does not
concern itself whether that information is consistent with other parts of the model.
View representation alone would allow creation of multiple views, each of which
would correctly conform to its specifications; however, their combination would not
build a coherent unit. We therefore speak of view integration as an extension to view
representation to ensure the conceptual integrity (consistency and completeness) of
the entire model across the boundaries of individual views.

2.3 Outline

The remainder of this paper will be organized as follows. First we present a simple
example of the difference between view representation and view integration. We then
introduce a view integration framework and its corresponding activities to describe
the problem of integration. To illustrate this framework, we will describe the repre-
sentation and subsequent integration of an architecture style, C2, in more detail. We
conclude the paper by summarizing the key issues and solutions.

3 Example: Layered Architecture constrains UML Design

Before we demonstrate how to represent and integrate a more complex architectural
style, C2, we highlight the differences between representation and integration using a
simpler, well-understood, layered architectural style.

"The layered architectural [style] helps to structure applications that can be de-
composed into groups of subtasks in which each group of subtasks is at a particular
level of abstraction." [9] The layered style defines which part of a system are allowed
to interact and which are not. For instance, assume that we have a trivial layered sys-
tem with four layers: (1) User Interface, (2) Application Framework, (3) Network and
(4) Database. The layered style defines that components within layer 1 (User Inter-
face) may talk to other components in layer 1 as well as to components that are part of
layer 2. Similarly, layer 2 components may interact among themselves, as well as
with layer 1 and layer 3 components. The layered architecture, however, disallows a
user interface component (layer 1) to talk directly to, say, the database in layer 4
without going through the intermediate layers 2 and 3.

In order to make use of the layered architectural style in UML, we need to repre-
sent layers in UML. An easy way of doing this is by using stereotyped UML pack-
ages. For instance, we may create a User Interface package with the stereotype layer

representation
(display)

integration
(constrain)

integration
(constrain)

UML

Object
State

Activity

Rapide

ERM

C2 for Structure
Wright for local Behavior

...

ADL World

Use-Case

Class

Sequence

Rapide for global Behavior

Wright

C2

UML model consists of a
collection of loosely integrated
diagrammatic views

Figure 2: Views and ADLs represented in UML

1, an Application Framework package with the stereotype layer 2 and so forth. Next,
we may use OCL to constrain the ways in which the layers (stereotyped packages)
may interact. Thus, with OCL we could specify that layer 1 may depend on layer 2,
layer 2 may depend on layer 3 and so forth. Note that we need not specify that layer 1
is allowed to talk to itself because that knowledge is already implicit in packages.
Having specified how to represent layers, a UML design tool may now be used to
create layered architectural diagrams.

Thus, we now have the means of representing an layered architectural view in
UML but nothing more. Fully integrating the layered style into UML also requires
that the realization of a system (i.e., its design and subsequent implementation) still
conforms to the architectural style rules. Both design and implementation will make
use of different types of views and, thus, we need to ensure that both are still consis-
tent with the constraints imposed by the architecture.

For instance, if we design our system using UML class or sequence diagram(s)
then the way those classes may interact is limited by both the notation of UML class
diagrams and the layered style. The former constraint is usually supported by UML
design tools (e.g. Rational Rose). However, the latter cannot yet be supported since
we did not yet specify that relationship. To do this we need to ensure that classes are
always associated with layers and that calling dependencies between those classes
correspond to calling dependencies of associated layers. There are basically two types
of mismatches that may happen at this stage:

• If the architecture defines some layers for which there are no associated classes in

the design, then this may indicate a potential conformance mismatch.
• If the design contains a class dependency that contradicts the layer dependency in

the architecture, then this may indicate a potential consistency mismatch.

4 UML Integration

To address the view mismatch problem, we have investigated ways of describing and
identifying the causes of architectural mismatches across UML views. To this end, we
have devised and applied a view integration framework, accompanied by a set of
activities and techniques for identifying mismatches in an automated fashion; this
framework is depicted in Figure 3 and described below.

The system model represents the model repository (e.g. UML model) of the de-
signed software system. Software developers use views to add new information to the
system model and to modify existing information (view synthesis). The view analysis
activity interacts with the system model and the view synthesis so that new informa-
tion can be validated against the existing information in the model to ensure their
conceptual integrity.

This approach exploits redundancy between views. For instance, view A contains
information about view B; this information can be seen as a constraint on B. The view
integration framework is used to verify those constraints and, thereby, the consistency
across views. Since there is more to view integration than constraints and consistency
rules, our view integration framework also provides an environment where we can
apply those rules in a meaningful way. Therefore, as already discussed, we see view

integration as an extension to view representation. The former extends the latter not
only by rules and constraints but also by defining what information can be exchanged
and how it can be exchanged. Only after the what and how have been established, can
inconsistencies be identified and resolved automatically.

• Mapping: Identifies related pieces of information and thereby describes what

information is overlapping.
• Transformation: Extracts and manipulates model elements of views in such a

manner that they can be interpreted and used by other views (how to address in-
formation exchange).

• Differentiation: Traverses the model to identify (potential) mismatches within its
elements. Mismatch identification rules can frequently be complemented by
mismatch resolution rules.

It is out of the scope of this paper to deal with automated mapping and transforma-

tion in detail. Automation techniques for both are described in [10] and [11]. We will
primarily focus on Differentiation in this paper. To illustrate the behavioral integra-
tion of an ADL later on, we will also demonstrate one Transformation technique.

5 C2 and UML

Section 3 highlighted the difference between view representation and integration in
the case of the layered architectural style. However, this example fell short of convey-
ing in detail how the two are actually accomplished. This section will complement
that discussion by showing how the C2 architectural style [6] can be represented and
then integrated into UML using the approach we propose.

View
Synthesis

(graphical and textual)

Differentiation
(Comparison)
identify differences
between model, rules,
and constraints

View Analysis

Transformation
(Extraction)
- through abstraction
- through consolidation
- through translation

Mapping
(Cross-Referencing)
- through names
- through patterns
- through association

System Model
e.g. UML model

Figure 3. View Integration Framework and Activities

5.1 Overview of C2

C2 is an architectural style intended for highly distributed software systems [6]. In a
C2-style architecture, connectors (buses) transmit messages between components,
while components maintain state, perform operations, and exchange messages with
other components via two interfaces (named “top” and “bottom”). Each interface con-
sists of sets of messages that may be sent and received. Inter-component messages are
either requests for a component to perform an operation, or notifications that a given
component has performed an operation or changed state.

A C2 component consists of two main internal parts. An internal object stores state
and implements the operations that the component provides, while a dialog specifica-
tion maps from messages received to operations on the internal object and from re-
sults of those operations to outgoing messages. Two components’ dialogs may not
directly exchange messages; they may only do so via connectors. Each component
may be attached to at most one connector at the top and one at the bottom. A connec-
tor may be attached to any number of other components and connectors. Request
messages may only be sent “upward” through the architecture, and notification mes-
sages may only be sent “downward.”

The C2 style further demands that components communicate with each other only
through message-passing, never through shared memory. Also, C2 requires that noti-
fications sent from a component correspond to the operations of its internal object,
rather than the needs of any components that receive those notifications. This con-
straint on notifications helps to ensure substrate independence, which is the ability to
reuse a C2 component in architectures with differing substrate components (e.g., dif-
ferent window systems).

Left side of Figure 4 shows an example C2-style architecture. This system consists
of four components and two connectors. One component is a database manager.
Interacting with the database manager are the database administrator, who has direct
access to the database, and the transaction manager, who uses the database either via

DB
Manager

DB
Admin Accounts

Transaction
Manager

database
bus

transaction
bus

DB Admin
<<C2Component>

DB Manager

<<C2Component>

Transaction
Manager

<<C2Component>>

Accounts

<<C2Component>

database bus <<C2Connector>>

transaction bus <<C2Connector>>

Connector

Link

Component

<<C2AttachUnderComp>>

<<C2AttachUnderComp>>

<<C2AttachOverComp>> <<C2AttachOverComp>>

<<C2AttachOverComp>>

<<C2AttachConnConn>>

Figure 4. Simple C2 Architecture Example and its UML representation

the Account component (handles the transaction on a given account) or directly via
the connector to connector link. This C2 diagram roughly corresponds to a layered
system where the top component is the data source, the bottom components constitute
the user interface, and the middle component shows the mitigating application layer.
The right side of Figure 4 shows how this same C2 system can be represented in
UML using a UML class diagram as a template. We chose not to modify the UML
meta-model in order to stay consistent with the UML definition. Instead we adapted
existing UML model elements to represent new concepts and used the UML extensi-
bility mechanism to be able to distinguish between them. The following section will
elaborate on that.

5.2 C2 Representation

In our previous work, we have begun exploring the issues in representing ADLs in
UML, both using existing UML diagrams [12] and extending them via stereotypes
[3]. In this section, we represent the key aspects of C2 in UML. This section is also
intended to sensitize the reader to the issues inherent in representing certain (external)
architectural concerns in UML.

The UML meta class Operation matches the C2 concept of Message Specification.
UML Operations consist of a name and a parameter list and indicate whether they will
be provided or required. To model C2 message specifications we add a tag to
differentiate notifications from requests and constrain operation to have no return
values. Unlike UML operations, C2 messages are all public, but that constraint is built
into the UML meta-class Interface used below.

Stereotype C2Operation for instances of meta-class Operation
[1] C2Operations are tagged as either notifications or requests.

C2MSGTYPE : ENUM { NOTIFICATION, REQUEST }
[2] C2 messages do not have return values.

SELF.PARAMETER->FORALL(P | P.KIND <> RETURN)
We represent C2 components in UML using the meta class Class. Classes may pro-

vide multiple interfaces with operations, may own internal parts, and may participate
in associations with other classes. We chose to model components as classes as an
illustration only. There are other possibilities, including UML Component or Package
meta classes (for example, see [4]). In the next section, we indeed show an example of
a C2 component represented as a collection of classes.

Stereotype C2Interface for instances of meta-class Interface
A C2 interface has a tagged value identifying its position.

C2POS : ENUM { TOP, BOTTOM }
All C2Interface operations must have stereotype C2Operation.

SELF.OCLTYPE.OPERATION->FORALL(O | O.STEREOTYPE = C2OPERATION)

Stereotype C2Component for instances of meta-class Class
[1] C2Components must implement exactly two interfaces, which must be C2Interfaces, one

top, and the other bottom.
SELF.OCLTYPE.INTERFACE->SIZE = 2 AND
SELF.OCLTYPE.INTERFACE->FORALL(I|I.STEREOTYPE=C2INTERFACE) AND
SELF.OCLTYPE.INTERFACE->EXISTS(I | I.C2POS = TOP) AND
SELF.OCLTYPE.INTERFACE->EXISTS(I | I.C2POS = BOTTOM)

[2] Requests travel “upward” only, i.e., they are sent through top interfaces and received
through bottom interfaces.
LET TOPINT = SELF.OCLTYPE.INTERFACE->SELECT(I|I.C2POS = TOP),
LET BOTINT = SELF.OCLTYPE.INTERFACE->SELECT(I|I.C2POS = BOTTOM),
TOPINT.OPERATION->FORALL(O|(O.C2MSGTYPE=REQUEST)IMPLIES O.DIR=REQUIRE)AND
BOTINT.OPERATION->FORALL(O|(O.C2MSGTYPE=REQUEST)IMPLIES O.DIR=PROVIDE)

[3] Notifications travel “downward” only. Similar to the constraint above.
[4] C2Components participate in at most two whole-part relationships named internalObject,

and dialog.
LET WHOLES = SELF.OCLTYPE.ASSOCEND->SELECT(AGGREGATION = COMPOSITE),
(WHOLE->SIZE <= 4) AND
((WHOLES.ASSOCIATION.NAME->ASSET)-SET{“INTERNALOBJECT”,“DIALOG”})->SIZE=0

[5] Each operation on the internal object has a corresponding notification which is sent from
the component’s bottom interface.
LET OPS = SELF.INTERNALOBJECT.FEATURE->SELECT(F | F-
>ISKINDOF(OPERATION)),
LET BOTINT = SELF.OCLTYPE.INTERFACE->SELECT(I | I.C2POS = BOTTOM),
OPS->FORALL(OP | BOTINT->EXISTS(NOTE | (OP.NAME = NOTE.NAME AND
 OP.PARAMETER = NOTE.PARAMETER) IMPLIES
 NOT.DIR = REQUIRED AND NOTE.C2MSGTYPE=NOTIFICATION))

C2 connectors share many of the constraints of C2 components. One difference is
that they do not have any prescribed internal structure. Components and connectors
are treated differently in the architecture composition rules discussed below. Another
difference is that connectors do not define their own interfaces; instead their inter-
faces are determined by the components that they connect. We omit the constraints
specifying attachments between components and connectors in the interest of brevity.

Stereotype C2AttachOverComp for instances of meta-class Association

Stereotype C2AttachUnderComp for instances of meta-class Association.

Stereotype C2AttachConnConn for instances of meta-class Association

Stereotype C2Connector for instances of meta-class Class
[1-5] Same as constraints 1-5 on C2Component.
[6] The top interface of a connector is determined by the components and connectors attached

to its bottom.
LET TOPINT = SELF.OCLTYPE.INTERFACE->SELECT(I | I.C2POS = TOP),
LET DOWNATTACH = SELF.OCLTYPE.ASSOCEND.ASSOCIATION->SELECT(A |
 A.ASSOCEND[2] = SELF.OCLTYPE),
LET TOPSINTSBELOW=DOWNATTACH.ASSOCEND[1].INTERFACE->SELECT(I|I.C2POS=
 TOP), TOPSINTSBELOW.OPERATION->ASSET = TOPINT.OPERATION->ASSET

[7] The bottom interface of a connector is determined by the components and connectors
attached to its top. This is similar to the constraint above.

Finally, we specify the overall composition of components and connectors in the
architecture of a system. Recall that well-formed C2 architectures consist of compo-
nents and connectors, components may be attached to one connector on the top and
one on the bottom, and the top (bottom) of a connector may be attached to any num-
ber of other connectors’ bottoms (tops). Below, we also add two new rules that guard
against degenerate cases.

Stereotype C2Architecture for instances of meta-class Model
[8] A C2 architecture is made up of only C2 model elements.

SELF.OCLTYPE.MODELELEMENT->FORALL(ME|ME.STEREOTYPE= C2COMPONENT OR
 ME.STEREOTYPE = C2CONNECTOR OR ME.STEREOTYPE = C2ATTACHOVERCOMP OR
ME.STEREOTYPE = C2ATTACHUNDERCOMP OR ME.STEREOTYPE = C2ATTACHCONNCONN)

[9] Each C2Component has at most one C2AttachOverComp.
LET COMPS=SELF.OCLTYPE.MODELELEMENT->SELECT(ME|ME.STEREOTYPE=C2COMPONENT),

COMPS->FORALL(C | C.ASSOCEND.ASSOCIATION->SELECT(A |
 A.STEREOTYPE = C2ATTACHUNDERCOMP)->SIZE <= 1)

[10] Each C2Component has at most one C2AttachUnderComp. Similar to the constraint
above.

[11] Each C2Component must be attached to some connector.
LET COMPS=SELF.OCLTYPE.MODELELEMENT->SELECT(ME|ME.STEREOTYPE=C2COMPONENT),
COMPS->FORALL(C | C.ASSOCEND.ASSOCIATION->SIZE > 0)

[12] Each C2Connector must be attached to some connector or component. Similar to the
constraint above.

5.3 C2 Integration

To demonstrate the C2/UML integration we need to consider an architecture defined
in the C2 style and a corresponding design in UML. Figure 5 (right side) shows a
UML class diagram that realizes or refines the C2 architecture presented in Figure 4.
Mapping from UML classes to C2 components/connectors is shown with dotted lines.
Basically, C2 components and connectors may be seen as the interfaces for compact,
self-sustaining sections of the implementation. Since C2 elements (components and
connectors) are often coarse grain, it is reasonable to assume that a collection of
classes is needed to implement a single C2 element.

Because of the fact that a C2 element is a black box, nothing can be said about how
classes that are part of a single element are supposed to interact. However, the interac-
tion of classes belonging to different C2 elements are constrained by the C2 style. For

DB
Manager

DB
Admin Accounts

Transaction
Manager

database
bus

transaction
bus

Data AccessOracle
Enterprise
Manager

Oracle

Oracle API

Network Lib

Accounts

connector
Database Bus

component
DB Manager

connector
Transaction Bus

component
Accounts

component
DB Admin

Potential Mismatch:
Link between components

DB Manager and DB
Admin violates C2

architectural constraints

Account DB API

ODBC

Potential Mismatch:
Link between component
Account and connector

transaction bus not
reflected in design view

T-GUIT-Framework

component
Transaction Manager

DB Manager/Database Bus Interface

Database-

Transaction

Bus Interface

Figure 5. C2 and corresponding Class View plus Mismatches

instance, if design classes Oracle, Oracle API, and Account DB API correspond to the
C2 component DB Manager, and if the design classes ODBC and Network Lib corre-
spond to the C2 connector Database Bus, then the interaction between these two
groups of classes needs to be consistent with the corresponding C2 architecture con-
straints. In the right half of Figure 5, the class links corresponding to the C2 compo-
nent/connector link from DB Manager to Database Bus can be seen in the shaded
area in the upper half of the diagram. The shaded area in the lower half is the class
link corresponding to the C2 connector to connector link from Database Bus to
Transaction Bus.

5.3.1 C2 Structural Integration
Having (manually) identified the Mapping from C2 to UML, we can now auto-

matically identify mismatches between the C2 view and the UML class view in Fig-
ure 5. In this example, no transformation is needed since the structures of both views
are similar (the need for transformation for the C2/UML integration will be illustrated
later). Figure 6 shows a simplified algorithm that can be used to identify mismatches.

The first step in Figure 6 corresponds to the Mapping activity outlined above. In
the second step we need to traverse both the C2 diagram and the UML class diagram
and mark all links with corresponding counterpart. For instance, in case of the link
from DB Manager to Database Bus in Figure 4, the equivalent design-level class
dependencies corresponding to that link are the dependency arrows from ODBC to
Oracle API and from Network Lib to Account DB API (see Figure 5). Thus, we mark
all those links and repeat that process for the remaining ones.

Step 3 further marks all links between classes that are part of a single C2 compo-
nent or connector. This is necessary because the C2 architecture in Figure 4 does not
specify what happens within a component/connector and thus we must assume that
class configurations corresponding to single C2 elements are consistent with the
architecture by default.

Once steps 2 and 3 are concluded, we should have ideally marked all links in both
the C2 view and the class view. If this is not the case, then we have identified poten-
tial mismatches. Figure 5 already shows this for both the C2 and UML class diagrams
with the unmarked links highlighted and pointed to by arrows:

• a C2 link between Accounts and Transaction Bus has no corresponding class
relationship. This indicates a potential nonconformance since the design does not
reflect everything the architecture demands.

1. FOR EACH C2 COMPONENT AND C2 CONNECTOR FIND CORRESPONDING UML CLASSES
2. FOR EACH C2 LINK
 FIND AND MARK C2 LINK AS WELL AS CORRESPONDING CLASS LINKS (INTERFACE)
3. FOR EACH UML CLASS LINK
 FIND AND MARK LINKS BETWEEN TWO CLASSES, WHERE BOTH CLASSES CORRESPOND TO
 ONLY ONE C2 COMPONENT OR CONNECTOR
4. FOR EACH UNMARKED C2 LINK RAISE NONCONFORMANCE MISMATCH
5. FOR EACH UNMARKED CLASS LINK RAISE INCONSISTENCY MISMATCH
6. FOR EACH C2 COMPONENT FIND AT LEAST ONE CLASS CALL DEPENDENCY BETWEEN CLASSES
 CORRESPONDING TO THAT C2 COMPONENT AND OTHER C2 COMPONENTS CONNECTED VIA
 THE SAME CONNECTOR

Figure 6. Differentiation Algorithm to identify Mismatches between Views

• a class dependency link from Oracle API to Oracle Enterprise Manager. These
two classes belong to different C2 components and in C2 a direct link from one
component to another is illegal. Thus, this unmarked link indicates a potential in-
consistency since the design seems to contradict the architecture.

5.3.2 C2 Behavioral Integration
The algorithm in Figure 6 has thus far ensured the structural integration of the C2

and class diagrams. Having ensured that the proper model elements interact and none
of the interaction is missing or inconsistent does not ensure that those modeling ele-
ments interact the proper way. However, the final integration step (step 6) of our
algorithm addresses behavioral integration.

A C2 architecture is more than just a structure with interfaces. It also describes
how components and connectors are supposed to interact. For instance, in Figure 4 the
Transaction Manager may interact with DB Manager and Accounts and vice versa;
however, the Transaction Manager is not allowed to interact with DB Admin (al-
though they both link to the same connector). Thus, a full integration of C2 and class
diagrams must also ensure that the class view dependencies adhere to C2 behavioral
constraints. In order to verify that the behavior of classes corresponding to Transac-
tion Manager follows the C2 architectural guidelines we need to verify the following:
there must be at least one calling dependency1 between a class corresponding to
Transaction Manager and one corresponding to DB Manager and Accounts, and,
there must be no calling dependencies between classes corresponding to Transaction
Manager and any other classes (e.g., DB Admin).

In order to do that, we need a technique that allows us to abstract away intermedi-
ate helper classes. For instance, in above example of Transaction Manager to DB
Manager we need to know the relationship of T-Framework (point of external access
to Transaction Manager) and Oracle API or Account DB API (two points of external
access to DB Manager). However, the relationship from, T-Framework to say Oracle
API is obscured by the intermediate classes Data Access and ODBC. Thus, we need a
technique that can eliminate both intermediate classes and leave only the pure (transi-
tive) relationship from T-Framework to Oracle API. To this end, we use the transfor-
mation technique Rose/Architect [13].

Rose/Architect (RA) (described in detail in [13]) identifies patterns of groups of
three classes and replaces them with simpler patterns using transitive relationships.
Currently, the RA model consists of roughly 80 rules of abstraction. Rule 2, for in-
stance, describes the case of a class which is generalized by a second class (opposite
of inheritance), which in turn is dependent on a third class (see Figure 7). This three-
class pattern can now be simplified by eliminating the middle class and creating a
transitive relationship (a dependency in this case) which spans from the first class to
the third one. The underlying RA model describes these rules and how they must be
applied to yield an effective result.

Figure 7 shows the RA refinement steps for the case of the Transaction Manager
to DB Manager relationship of our design view (Figure 5). After applying two rules

1 Note that C2 prohibts the use of shared variables. Since classes do not make use of events or

other triggering mechanism this leave only procedure calls as an option.

(rules 2 and 59 respectively, see [13]) we get a simplified pattern of two classes and a
dependency relationship between them. If this is also done for the other classes dis-
cussed above, we can automatically verify whether the behavior of a class diagram
conforms to the behavioral constraints opposed by a C2 architecture. Through this
process, we find a potential mismatch between the classes corresponding to Accounts
and DB Manager: no dependency relationship (mandated by the C2 architecture)
could be found after abstracting away the Network Lib helper class.

6 Conclusion

This work outlined the differences between view representation and view integra-
tion. The former is satisfied by merely using some predefined modeling elements and
adapting them so that they may be used to represent new modeling elements. The
works of Robbins et al. [3] on C2 and Wright, Hofmeister et al. [4] on various
conceptual architectural views, and Lyons [5] on ROOM are examples of representing
architectural notations in UML. These approaches fall short of fully integrating the
notations with UML, however, their view representations provide a valuable starting
point for view integration. Automated integration is only possible once views are
represented within a single model that supports both a common way of accessing
modeling elements and cross-referencing them.

In order to integrate C2 into UML, we presented a view integration framework and
demonstrated its use. For view integration, we needed to accomplish the three activi-
ties discussed in Figure 3: Mapping, Transformation, and Differentiation. Differentia-
tion was demonstrated using the algorithm in Figure 6; Rose/Architect was presented
as a Transformation technique to support behavioral analysis; we did not discuss
Mapping in detail, as it was discussed elsewhere.

As mentioned previously, views are nothing more than an abstraction of relevant
information from its model. Views are necessary to present that information in some
meaningful way to a stakeholder (developer, architect, customer, etc.). When we talk
about the need to integrate views, we are really talking about the need of having a
system model integrated with its views. Although a full integration effort may seem
improbable at this point, our initial experience indicates that it can still be attempted
and (semi) automated for significant parts of a system. To date we have provided

Use Rule 2

ODBC Oracle APIData AccessT-Framework

Oracle APIData AccessT-Framework

Use Rule 59 Oracle APIT-Framework

Refinement

Abstraction

Figure 7. Using Rose/Architect to derive Behavior Dependencies

initial tool support to semi-automate both C2 to UML representation as well as C2 to
UML integration [14].

7 Acknowledgements

This research is sponsored by DARPA through Rome Laboratory under contract
F30602-94-C-0195 and by the Affiliates of the USC Center for Software Engineering:
http://sunset.usc.edu/CSE/Affiliates.html.

8 References

1. Siegfried, S.: Understanding Object-Oriented Software Engineering. IEEE Press (1996)
2. Rumbaugh, J., Jacobson, I., and Booch, G.: The Unified Modeling Language Reference

Manual. Addison-Wesley (1998)
3. Robbins, J. E., Medvidovic, N., Redmiles, D. F., Rosenblum, D. S.: Integrating Architec-

ture Description Languages with a Standard Design Method. Proceedings of the 20th In-
ternational Conference on Software Engineering, Kyoto, Japan (1998)

4. Hofmeister, C., Nord, R. L., and Soni, D.: Describing Software Architecture in UML.
Proceedings of the First Working IFIP Conference on Software Architecture (WICSA1),
Kluwer Academic Publishers, Boston, Dordrecht, London (1999) 145-159

5. Lyons, A.: UML for Real-Time Overview. White Paper, ObjectTime (1998)
6. Taylor, R. N., Medvidovic, N., Anderson, K., Whitehead, Jr., E. J., Robbins, J.

E., Nies, K. A., Oreizy, P., and Dubrow, D. L. A component and message-based
architectural style for GUI software, IEEE Trans. Software Engineering, June,
Vol.22, No.6 (1996) 390-406

7. Allen, R. and Garlan, D. A Formal Basis for Architectural Connection, ACM Transactions
on Software Engineering and Methodology, Vol. 6, No. 3, July (1997) 213-249

8. Luckham, D. C. and Vera J. An Event-Based Architecture Definition Language, IEEE
Transactions on Software Engineering, September (1995)

9. Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: A System of Patterns:
Pattern-Oriented Software Architecture. Wiley (1996)

10. Egyed, A.: Automating Architectural View Integration in UML. Technical Report USC-
CSE-99-511, Center for Software Engineering, University of Southern California, Los
Angeles, CA 90089-0781 (1999)

11. Egyed, A.: Using Patterns to Integrate UML Views. Technical Report USCCSE-99-515,
Center for Software Engineering, University of Southern California, Los Angeles, CA
90089-0781 (1999)

12. N., Medvidovic, D.S. Rosenblum: Assessing the Suitability of a Standard De-
sign Method for Modeling Software Architectures. Proceedings of the TC2 First
Working IFIP Conference on Software Architecture (WICSA1), Kluwer Aca-
demic Publishers (1999) 161-182

13. Egyed, A. and Kruchten, P.: Rose/Architect: a tool to visualize software architecture.
Proceedings of the 32nd Annual Hawaii Conference on Systems Sciences (1999)

14. Center for Software Engineering, University of Southern California: Software Architec-
ture, http://sunset.usc.edu/software_architecture/

